If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15x^2+50x+20=0
a = -15; b = 50; c = +20;
Δ = b2-4ac
Δ = 502-4·(-15)·20
Δ = 3700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3700}=\sqrt{100*37}=\sqrt{100}*\sqrt{37}=10\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{37}}{2*-15}=\frac{-50-10\sqrt{37}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{37}}{2*-15}=\frac{-50+10\sqrt{37}}{-30} $
| 30x-4=32 | | (2/5)x+(4/5)=-(4/5) | | 4x-9x=17 | | 27=(x+3)(x-3) | | 36.5-24.5=x | | 3(x+1)-6=5(x+1) | | 10(-2x+1)=-19x-19 | | 8n=128n | | 5n+5=6n-7 | | 6v-30=84 | | h+11=-11 | | 4^5x+6=64 | | 18/(7+x)=x | | 3(x+1)=2(x-3 | | 18/(7+x)=x | | 8z²—16z+8=0 | | 3x+33/6+x+3/5=17 | | 2x²+22x+48=0 | | 7x-(2x+24)=16 | | w/4-10=-18 | | 1+26-13=12-4b-2b | | 6-3(2p-4)=-8 | | X+3-2=x/2+6 | | 49^2x=16807 | | 10^3+x=810 | | 7(x-3)+2=2x+5(-3+x) | | 8n+15=255 | | 31x+24=5(5x+6)+6x-6 | | -4(v+8)=-8v-28 | | P(t)=105t(0.81^t) | | x/4=-12*4 | | y=130-2(0) |